
1© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Name: SMDIPROT
Description: Documentation of SCSI Musical

Data Interchange Protocol
Document Version: 0.03

Copyright 1991 Peavey Electronics Corporation

2© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Contents

SCSI Musical Data Interchange Protocol (SMDI) ... 3

Overview... 3
SCSI Background .. 4
General Principles of SMDI Messages and Transactions ... 5
SMDI Message and Transaction Errors ... 7

SMDI Procedures ... 9
SMDI Capability Test.. 10
Obtaining A Slave Sample Header... 10
Transferring A Sample From Slave To Master... 11
Transferring A Sample From Master To Slave... 12
Deleting A Sample From Slave Memory ... 14

SMDI Messages .. 14

Table 1 - SMDI Message Codes .. 39

Table 2 - SMDI Message Rejection Codes .. 40

Table 3 - SMDI Sense Codes (for use with REQUEST SENSE command) 41

3© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

 SCSI Musical Data Interchange Protocol (SMDI)

Overview

SMDI has been designed primarily for the fast transfer of digitally-sampled audio information between
SCSI-equipped devices using a non-device specific format. The message exchange system used to perform
such transfers is based loosely upon the MIDI Sample Dump Standard (SDS), but is structured to take
advantage of the much higher data throughput capabilities of SCSI as compared to MIDI. The sample transfer
protocol goes beyond the limitations which MIDI SDS imposed, while remedying some of its specific
deficiencies.

SMDI is not intended as a general-purpose information interchange platform. However, ample room
is available for the definition of new messages not directly associated with the transfer of sample files. In
addition to the actual sample transfer protocol, SMDI provides for the transmission of arbitrary MIDI messages
via SMDI, and sets aside certain message code ranges for use with manufacturer- or device-specific messages.
This allows SMDI to fully support applications which deal with other types of data in addition to generic
sample files (e.g., sample editor/librarians which offer device-specific support) without resorting to the use
of a simultaneous MIDI connection. It also provides a convenient path for the migration of existing MIDI data-
transfer functions to SMDI with minimal modification, as well as a means whereby a single application can
transparently use either MIDI or SMDI as the communications interface.

It may be worthwhile to note two more things SMDI is not: 1) an attempt to find a successor to MIDI
- SMDI, and SCSI in general, while far superior to MIDI as a medium for the transfer of large amounts of data,
are poorly suited to the type of real-time event communication for which MIDI is commonly used, and 2) an
attempt to create an audio or MIDI network - SMDI addresses the data-transfer aspects of digital audio and
MIDI devices, and makes no attempt to address any of their other aspects.

4© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

SCSI Background

SMDI employs a limited set of SCSI commands available to devices which conform to the standard
SCSI definition for a processor device. Processor devices communicate by transferring data packets using the
SCSI SEND and RECEIVE commands, which are defined only for the SCSI processor device type. The SEND
command is used by the initiator to send a packet of information to the target, while the RECEIVE command
is used by the initiator to obtain a data packet from the target (the data packet is that which is transferred during
the data-out phase of the SEND command or the data-in phase of the RECEIVE command). Transfers using
these commands are sized to arbitrary byte lengths, rather than in blocks as per the more-familiar READ and
WRITE commands defined for direct-access devices (e.g., disk drives). Data packet content is not defined by
the SCSI spec, but is established by consensus among the processor devices involved. This makes the SEND
and RECEIVE commands ideal as a basis for SMDI, which operates by transmitting SMDI messages as SEND/
RECEIVE data packets. Note that SMDI messages are completely unrelated to SCSI messages (i.e., message-
in and message-out), which are not utilized by SMDI.

The specification for a SCSI processor device includes a small number of “mandatory” SCSI
commands in addition to SEND and RECEIVE. Notable among these are TEST UNIT READY, INQUIRY
and REQUEST SENSE, all of which are utilized by SMDI devices at certain times. The INQUIRY command
is the one whereby target device identity information is obtained, most significantly the SCSI device type,
which should be 03h for SMDI slave devices, indicating that they are SCSI processor devices which implement
the SEND and RECEIVE commands. A SMDI master should not issue these commands to any target device
unless it has obtained this device type value from the target using INQUIRY. SMDI provides additional means
for determining whether or not a SCSI processor device is also SMDI-capable. The uses of TEST UNIT
READY and REQUEST SENSE are detailed in later sections. As with any SCSI target mode device, SMDI
slave devices must be able to smoothly intercept and reject unrecognized SCSI commands without causing
SCSI bus hang-up.

Because the computers typically used in a music environment usually do not readily support SCSI
target mode operation, SMDI places the entire burden of conducting communications in both directions upon
the SMDI master device. The master device always assumes the role of SCSI initiator, regardless of the
direction of message transfer. SMDI slave devices are passive - in order for a SMDI slave device to transfer
a message to a master, the master must issue a RECEIVE command to the slave, which responds as a SCSI
target.

It should be mentioned that there is no prohibition against a single device being able to assume both
SMDI master and SMDI slave roles at different times, provided that it maintains any given role for the duration
of any SMDI procedure in which it becomes engaged.

5© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

General Principles of SMDI Messages and Transactions

This section contains a significant amount of detail pertaining to SMDI at the level of an individual
message and its component parts, as well as some discussion of the rationale behind the design of the message
format, and of conditions which are considered as errors. The reader may find it helpful at first to read quickly
through this section (and the following one, which focuses upon message error handling) and proceed to the
discussion of SMDI procedures which appears in a later section in order to obtain a clearer and more high-level
understanding of the way in which SMDI messages normally work in the context of procedures, before
attempting to fully absorb the low-level details presented here.

SMDI messages consist of strings of bytes which are transferred during the data-out phase of a SEND
command or the data-in phase of a RECEIVE command, and which conform to the SMDI message format.
SMDI procedures (such as those for transferring sample files), generally consist entirely of sequenced
exchanges of such messages. SCSI commands other than SEND and RECEIVE are not usually involved in
SMDI procedures.

The SEND and RECEIVE commands, in and of themselves, do not convey any SMDI information and
should be viewed as merely the vehicle of SMDI messages. These commands are quite generic, in essence
specifying only the length of the packet which an initiator is about to send or the maximum data packet length
which an initiator is prepared to receive. (In SCSI terminology, this maximum length is referred to as
Allocation Length. A SCSI target device can legally return any number of bytes up to the specified Allocation
Length when responding to a RECEIVE command or to any other command which specifies an Allocation
Length without violating SCSI rules, although it is generally expected to return all of the bytes it has, and no
more, when it is not limited by the Allocation Length.) A SMDI master device therefore cannot use the
RECEIVE command alone to request any specific message from a slave device, nor can it know in advance
the type or precise length of the message with which the SMDI slave will respond to the RECEIVE command.
Likewise, although SMDI specifies prescribed sequences for multi-message procedures, a SMDI slave device
cannot make any assumptions about the next message which will be sent to it by a SMDI master device,
especially if it is not currently engaged in such a procedure. Finally, any SMDI device is likely to be called
upon to engage in SCSI transactions with non-SMDI devices with which it will inevitably find itself sharing
the SCSI bus, and must be able to respond appropriately.

For these reasons, there are three central principles which apply to all SMDI activity:

1. All SMDI messages fully identify themselves via their message content.
2. All SMDI transactions consist of a SEND followed by a RECEIVE.
3. SMDI messages must always be transmitted in their entirety.

The full meaning of each of these principles, and their implications, are elaborated upon in the
following discussion.

All SMDI messages fully identify themselves via their message content. Every SMDI message begins
with a SMDI message header which is followed by additional bytes as appropriate to the particular message.
Some SMDI messages consist only of a header. The SMDI message header is always 11 bytes long and consists
of three distinct parts, presented here in order of appearance:

1. The SMDI message tag is a fixed four-byte string (“SMDI”) serving as an identifying tag for all

6© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

SMDI messages.
2. The Message Code identifies the type of message. It consists of a two-byte Message ID code,

followed by a two-byte Message Sub-ID code.
3. The Additional Message Length is a three-byte field which indicates the number of bytes

following the header in the current message.

The SMDI message tag is the primary means whereby a SMDI device can distinguish between SEND/
RECEIVE data packets which are SMDI messages and those which are not. SEND/RECEIVE data packets
not beginning with this tag are not to be recognized as SMDI messages, and should generally be taken as an
indication that the device from which the data packet originated is not a SMDI device.

The message ID code is the primary identification of a message type. The message sub-ID code is
normally zero unless the particular message type has defined variations which do not warrant a completely
different ID. The message sub-ID may also be used to indicate revised/extended versions of a particular
message.

The main purpose of the Additional Message Length parameter is to provide a SMDI master device
with a specific length value for a message being received from a slave, to assist it in correctly completing the
SCSI RECEIVE command. Without this parameter, the SMDI master has no direct indication of the actual
length of an incoming message. Although most SMDI messages have a fixed length which is implied by the
Message Code, there are some messages whose length may vary. More importantly, the inclusion of the
Additional Message Length parameter permits a master device to correctly complete a RECEIVE command
in which an unknown or unsupported message is being returned, thereby making it unnecessary for the master
to have specific knowledge of each and every SMDI Message Code, and allowing compatibility with
unanticipated future extensions to the Message Code list. An additional function of this parameter is to enable
a SMDI master to detect the truncation of an incoming message owing to an inadequate Allocation Length
(more on this in the next section).

As used in a message sent to a slave, the Additional Message Length parameter is somewhat redundant,
since it should always be equal to the SEND command Transfer Length minus eleven (the size of the SMDI
message header). As such, however, it serves as a further message integrity indicator. Slave devices which
detect a conflict between the two numbers should always defer to the SCSI Transfer Length value in order to
complete the SEND command. Master devices should also perform such an integrity check when receiving
known messages, especially those which have a fixed length, and should consider conflicts as cause for
termination of a SMDI procedure.

All SMDI transactions consist of a SEND followed by a RECEIVE. A SMDI master issues a RECEIVE
command in order to obtain the slave’s response to the most recent SEND command (referred to as a “reply”).
The message which a SMDI slave presents during a RECEIVE command is always its reply to the message
sent via the most recent SEND command. This alternation must be adhered to strictly, with only rare
exceptions. Deviations, which include spurious RECEIVE commands not preceded by a SEND, as well as
SEND commands issued to a slave device which is still holding the reply to a previous SEND command, are
flagged as SCSI errors. The slave device thus enforces the SEND/RECEIVE alternation by refusing to accept
SEND and RECEIVE commands which are issued out of sequence.

SMDI messages must always be transmitted in their entirety. In order to successfully receive a slave
message, a SMDI master must issue its RECEIVE command with an Allocation Length adequate to fully

7© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

receive the message which the slave wishes to return. Although the master cannot predict with absolute
certainty the message which it will receive, the number of appropriate slave replies to any given message from
a master device is usually very small - the master should set its Allocation Length to accommodate the largest
of the anticipated messages.

The slave device is always required to return its entire message if the presented Allocation Length is
large enough to permit this. However, the slave device is not permitted to exceed the Allocation Length
limitation set by the RECEIVE command. If presented with an inadequate Allocation Length, the slave must
retain its reply (message) in anticipation of a subsequent attempt by the master to correct the problem and
receive the complete message. In contrast to the usual handling of Allocation Length in commands such as
INQUIRY and REQUEST SENSE, where a target is expected to return bytes up to the Allocation Length limit
if this is smaller than the total number of bytes available, a SMDI slave in this situation is expected to return
only a SMDI message header if the Allocation Length permits, or no data at all if the Allocation Length is too
small to permit the complete transfer of a header. This situation is discussed in detail in the next section.

As well-behaved SCSI target devices, SMDI slave devices are required to correctly complete any
SEND command to which they respond according to standard SCSI rules. The SEND command Transfer
Length parameter indicates precisely the number of bytes which must be transferred to the slave during the
data-out phase. In order to guarantee avoidance of SCSI problems such as possible bus hang-ups, the slave must
transfer this number of bytes during the data-out phase, even if the transferred bytes are discarded upon receipt,
unless it skips the data-out phase altogether. The latter response is appropriate only under very exceptional
conditions which are discussed in the next section. The discarded bytes may represent a valid SMDI message
which the slave is for any reason unable to accept at the time that it appears (this would be reported as a SMDI
error, using a SMDI message reply), or may be a SEND data packet in which no recognizable SMDI message
appears. SMDI procedures are structured so that a slave should never need to handle a very large incoming
message unexpectedly.

SMDI Message and Transaction Errors

It should be emphasized here that most of the error and exceptional conditions mentioned in the
foregoing discussion of SMDI messages and discussed here in detail are not features of normal SMDI
operation, which is typically quite straightforward and streamlined. Nevertheless, SMDI devices must be able
to detect such conditions and respond to them in a consistent manner. Most of this burden falls to the slave
device, which must report all errors back to the master. The master should be able to detect errors in messages
from a slave and take appropriate action, but this action does not include reporting of errors to the slave.

SMDI error conditions fall into two main categories: those which are reportable using SMDI messages,
and those which require SCSI-level handling. SMDI strives to keep communication at the SMDI level as far
as possible, using only normally-terminated SEND and RECEIVE commands at all times. SCSI-level error
handling and reporting (i.e., CHECK CONDITION status and the use of the REQUEST SENSE command)
is considerably more disruptive and is employed only where the use of SMDI messages is made impossible
by the circumstances of an error, or where the error condition is clearly outside the proper domain of SMDI.

Errors in the first category are related to valid SMDI message exchanges in which the message content
is at issue - for example, the sending of a message with an unrecognized Message Code to a slave, or one which

8© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

is inappropriate in the context of a SMDI procedure currently in progress, or which contains an unexpected,
incorrect or inappropriate parameter value in some part of the message beyond the message header. SMDI
provides the means for a slave to report all such errors at the SMDI message level.

Errors in the second category are typically related to incorrect SEND/RECEIVE sequencing, or to
problems in the SMDI message header itself. Such errors do not normally arise when properly-functioning
SMDI devices are communicating with one another, and generally indicate a significant software error on the
part of one of the devices, or that one of the devices is not a SMDI-capable device. In either case, the use of
SMDI messages to report errors is unworkable. A SMDI slave reports the occurrence of such errors by
returning CHECK CONDITION status during the status phase at the end of a SEND or RECEIVE command.
A SMDI master (or other initiator) which obtains this status from a SMDI slave (or other target) must issue
a REQUEST SENSE command and read extended sense data in order to obtain more specific information
regarding the error. Within this category are two classes of errors: those which involve execution of a data-
out or data-in phase, and those in which this phase is skipped.

Errors in the first class are those which are not detectable until data-in or data-out transfer has gotten
underway, because the error is related to the content of the SEND/RECEIVE data packet. This includes data
packets which do not begin with the “SMDI” message tag, those in which the Additional Message Length
parameter in the SMDI message header is in conflict with the Transfer Length parameter of the SEND
command, and those in which the Additional Message Length parameter deviates from the expected value for
a known, fixed-length SMDI message. A SMDI slave handles such cases by continuing to accept (and,
typically, discard) bytes from the initiator until the data-out phase is complete, based upon the value of the
Transfer Length parameter of the SEND command, after which it proceeds to report the error in the status
phase.

Errors in the second class are detectable at the SCSI command level and are related either to incorrect
SEND/RECEIVE sequencing or to unacceptable Transfer/Allocation Length values (specifically, values
smaller than 11, which preclude the possibility of transferring a complete SMDI message header). A SMDI
slave responds to errors in this class by bypassing the data-in/out phase and proceeding directly from command
phase to status phase to report the error.

There is one exceptional condition which does not fit neatly into any of the above categories. This
condition arises when a master attempts to receive a slave’s pending message using an Allocation Length
which is equal to or greater than 11, but not large enough to permit the complete transfer of the slave’s message.
The correct slave response in this case is to return only a SMDI message header corresponding to the message
it was prepared to reply with, and to retain this message as a pending reply. The header should indicate the
Additional Message Length as though the entire message was being returned - this is referred to as a truncated
receive, and provides the master with the information it needs to allow the complete message to be received
without a violation of SCSI rules. The slave, in this situation, does not explicitly signal an error condition in
either the SCSI or SMDI domain.

The master device is expected to detect a truncated receive when it occurs by noting that the Allocation
Length which it used was not sufficient to accommodate a message with a length as indicated in the returned
header, and is expected to immediately (i.e., without an intervening SEND command) make another attempt
to receive the pending reply, using a larger Allocation Length based upon the Additional Message Length value
in the returned header. Note that this is an exception to the SEND/RECEIVE alternation rule, as well as to the
usual definition of the Additional Message Length parameter (since no additional message bytes will follow
in this case). As is true at any other time when a SMDI slave has a reply message pending, the reply will remain
pending until it can be completely transferred to the master, and any SEND command issued during this time

9© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

will be rejected.

Because the SMDI error conditions which are reported using SCSI-level error handling are nonetheless
unique to SMDI, the sense data which a SMDI slave will return in response to the REQUEST SENSE command
after such an error will consist of codes in the vendor-specific code ranges. The sense key will be 09h, the catch-
all sense key for vendor-specific errors. The additional sense codes should also be read, as these will indicate
precisely which SMDI error occurred (see table xxxx). SMDI devices should not use the SCSI 1 non-extended
sense data format. SMDI slaves should be capable of returning the mandatory (SCSI 2) minimum of 18 bytes
of sense information, and SMDI masters should use this number as the Allocation Length value in the
REQUEST SENSE command.

SMDI Procedures

A SMDI procedure consists of one or more interlocked (SEND/RECEIVE) SMDI message exchanges
between a SMDI master and a SMDI slave.

SMDI procedures provide the master device with the ability to learn the current state of the slave device
and of its sample memory, to adapt itself to the protocol capabilities or limitations of the slave, and to initiate,
perform and prematurely terminate sample or other data transfers in either direction between master and slave.
The master may also be able to command the execution of specific tasks which are carried out entirely by the
slave, with no further transfer of information between master and slave, such as deleting a sample from slave
memory or directing the slave to save its memory contents to its own mass storage, if appropriate procedures
have been defined. Other standard procedures will likely be defined subsequently to the release of this as-yet
preliminary version of the SMDI protocol document, some using messages which also will be defined at a later
time. Manufacturer-specific procedures are also possible, provided that they adhere to all of the protocol rules.

Both single- and multi-exchange procedures follow prescribed sequences which allow for little or no
deviation, thus making the task of implementing these procedures in software a fairly simple one. There is
usually but a single “expected” next message from either a master or a slave at any given point in a procedure,
and the appearance of any inappropriate or unexpected message is always considered cause for immediate
termination of the procedure and return to an idle or disengaged state from which another procedure may be
initiated.

The SMDI Message Reject message may be presented at almost any time as a slave’s reply to a master’s
message if conditions warrant it. This message incorporates rejection codes which permit a slave to notify the
master of the specific reasons for the rejection of a message, and always results in termination of a procedure
when it appears. A SMDI slave uses this message to terminate a procedure if the master sends it an
inappropriate message (a slave must never abandon an incomplete procedure without completing the last
SEND/RECEIVE exchange).

Most other SMDI messages have very specific uses and are considered inappropriate outside of their
limited areas of applicability. While in the idle state, a SMDI slave is expected to reject any message from a
master which is not appropriate to the idle state - i.e., which is not a message used to initiate a procedure.

The SCSI commands TEST UNIT READY, INQUIRY and REQUEST SENSE are not components
of SMDI procedures. SMDI slave devices should be able to field these commands at any time without effect

10© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

upon a SMDI procedure in progress, including during the interval between a SEND command and its
corresponding RECEIVE command. However, when a procedure is in progress, it is acceptable for a SMDI
slave to terminate these commands with BUSY status instead of responding normally.

A reading of the following procedures should make clear the possibilities for confusion and errors
which are posed by inadvertent interference between multiple master devices. A slave device should guard
against this by keeping track of the SCSI ID of the master device with which it is communicating, by means
of the SCSI ID information presented during the selection phase. When a multi-exchange SMDI procedure is
in progress with a given master/initiator, the slave should respond to any SCSI command issued by any other
initiator by terminating it with BUSY status. If the master/initiator does not identify itself during the selection
phase, the slave must assume a single-initiator system with the initiator on SCSI id 7 - this is most likely the
same assumption made by the initiator in such cases. It is then the user’s/master’s responsibility to avoid any
situations in which multiple-master interference might occur.

SMDI Capability Test

The master sends an SMDI Master Identify message to slave, then expects to receive a SMDI Slave
Identify message. This procedure should be performed after a master has identified a SCSI target as a SCSI
processor device using the INQUIRY command, and before attempting other SMDI procedures. The master
must send no further SMDI messages to this target if it fails to reply properly to this one. There are no
restrictions on the use of this procedure when SMDI devices are in an idle state. It is permissible to use this
procedure as a preliminary step whenever preparing to perform more extensive procedures. Note that the
messages which are exchanged are entirely generic and do not convey any device-specific information.

Obtaining A Slave Sample Header

This procedure is used as a first step when the master wishes to select a particular sample in the slave
for transfer to the master, or is used on its own when the master merely wishes to obtain information about the
contents of a particular sample location in the slave.

The master sends a Sample Header Request message to the slave, then expects to receive either a
Sample Header message or a SMDI Message Reject message as reply. The master must use an Allocation
Length adequate to receive the Sample Header reply, which is the larger of the two.

The Sample Header reply is used if the specified sample exists and if it can be transmitted to the master
if requested. The Sample Header is analogous to a MIDI SDS dump header - it presents all relevant information
about the sample. If the master is preparing to obtain this sample from the slave, the Sample Header provides
the information which allows the master to decide whether or not it can actually accommodate the sample.

The SMDI Message Reject reply is used if the specified sample does not exist, including cases in which
the specified sample number is beyond the range used by the slave device. A SMDI Message Reject reply
should also be used if the slave device’s normal capabilities do not include the transfer of sample information
to another device.

The slave device must not assume the liberty of interpreting sample numbers in a loose or inconsistent
fashion. While the slave can use any desired method to map SMDI sample numbers to its own internal wave

11© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

numbers, this mapping must always yield the same result for a given SMDI sample number (i.e., it must always
point to the same sample location in the slave regardless of circumstances such as addition/deletion of other
samples, etc). Furthermore, the mapping must be unique - it must not permit more than one SMDI sample
number to point to a given sample location. Sample numbers should not be aliased by the slave.

Transferring A Sample From Slave To Master

The master executes the procedure for obtaining a slave Sample Header. This provides the master with
confirmation that the sample exists and can be transferred to the master, as well as with the information which
the master needs to determine whether it can accommodate the sample, and which it will use both to enact the
transfer and to maintain the sample after it has been transferred. It also serves to notify the slave that the
specified sample may presently be requested for transfer to the master.

Following the successful transfer of a Sample Header to the master, the master must send a Begin
Sample Transfer message to the slave. This message specifies both the requested sample number and the
maximum Data Packet Length which the master can accommodate

Note: In this discussion and those which follow, “Data Packet” refers to a specific SMDI message used
to transfer blocks of file or other data, and should not be confused with SCSI SEND/RECEIVE
data packets which are the vehicle for all SMDI messages, as referred to in preceding sections).

The master must receive a reply from the slave which will be either Begin Sample Transfer Acknowledge or
SMDI Message Reject.

The Begin Sample Transfer Acknowledge reply is given when the slave is prepared to proceed with
the transfer. It specifies the Data Packet Length which will be used by the slave in transferring the sample to
the master. Normally, the slave device should be able to match the Data Packet Length (maximum) value sent
by the master in the Begin Sample Transfer message, and in general it should do so unless it is unable to, even
if the sample to be transferred is smaller than a single packet. Otherwise, it should specify the largest Data
Packet Length it is able to support - under no circumstances should the slave specify a Data Packet Length
larger than the maximum length indicated by the master. The Data Packet Length chosen must not result in
the splitting of individual sample words across packets - eg., for a 16-bit format, the Data Packet Length must
be an even number.

The SMDI Message Reject reply will be given if a Sample Header with the same Sample Number has
not been successfully transferred to the master in the exchange immediately preceding that of the Begin Sample
Transfer message. A SMDI Message Reject reply should also be used if the slave device’s normal capabilities
do not include the transfer of sample information to another device.

Assuming that the Begin Sample Transfer Acknowledge reply has been given, the transfer now
proceeds as a series of slave-to-master packet transfer exchanges, each of which is as follows:

The master sends a Send Next Packet message to the slave. This message includes the number of the
packet currently expected.

12© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

The master must then receive a reply from the slave. The reply is either a Data Packet message, a SMDI
Message Reject message, or an Abort Procedure message.

Note: That the master, when receiving the reply, must use an Allocation Length which is large enough to
accommodate a complete Data Packet message (usually much larger than the other possible
replies) in order to ensure that the entire reply will be received from the slave. This length is equal
to the Data Packet Length plus the Data Packet message overhead (SMDI message header plus
Packet Number).

The Data Packet reply is the expected one.

The SMDI Message Reject reply is used when the Packet Number in the master’s Send Next Packet
message is different from the number of the packet which the slave is prepared to transfer.

The Abort Procedure message may be returned by the slave if for any other reason it is unable to
continue the transfer. This may occur if the slave encounters an unrecoverable internal hardware failure or
software/data error while the procedure is underway. Another possible reason for this is that the user has
exercised the “manual override” option of hitting the designated stop button on the slave device’s front panel
(assuming that one exists) as a means of forcing an immediate halt to the transfer. It should be noted that it is
considered preferable (and desirable) to implement this sort of manual stop capability on the master device,
rather than on the slave. If a master-side manual stop is used, the master sends an Abort Procedure message
to the slave instead of the next Send Next Packet message. The slave replies to the Abort Procedure message
with an Ack message. The Abort Procedure message should not be used under normal conditions.

Following the successful completion of each Data Packet exchange, the master is expected to initiate
the next packet exchange. Each Data Packet is expected to contain precisely the number of data bytes which
the slave indicated would be used for these messages. The Data Packet message exchange continues until the
number of bytes remaining to be transferred is equal to or less than the stated Data Packet Length, at which
point a final Data Packet which contains only the remaining bytes (and is therefore probably smaller than the
others) is transferred. The master and the slave are expected to independently anticipate both the time of
appearance of the final Data Packet message and its data length. Once the final Data Packet is transferred, the
procedure is complete, and both master and slave are disengaged.

Transferring A Sample From Master To Slave

The master sends a Sample Header message to the slave. This provides the slave with all of the sample
information which it needs to determine whether it can accommodate the sample, and which it will use both
to enact the transfer and to maintain the sample after it has been transferred. The master must receive a reply
from the slave which will be either Begin Sample Transfer Acknowledge or SMDI Message Reject.

The Begin Sample Transfer Acknowledge reply is given to indicate that the slave is able to accept a
transfer of the indicated sample from the master, and that it is ready for the master to initiate the transfer. This
reply also informs the master of the maximum Data Packet Length which can be accommodated by the slave
for the current transfer.

13© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

The SMDI Message Reject reply indicates that the slave cannot currently accept a transfer of the sample
as it was represented by the Sample Header. Possible reasons for rejection include insufficient memory space
available or a sample number which is beyond the slave device’s range. A slave which can accommodate only
monaural sample data files may reject a Sample Header indicating multiple interleaved channels of sampled
audio data. A SMDI Message Reject reply should also be used if the slave device’s normal capabilities do not
include accepting sample information from another device.

A slave device which can respond to SCSI commands while engaged in an operation which would
conflict with sample transfers may also give a SMDI Message Reject reply indicating that it is currently busy.

Note: That the existence of a sample in the slave at the specified sample number is not a valid reason for
a reject reply - the slave is expected to delete any existing sample at the specified location once the
transfer is actually initiated. Also note that the slave is not at liberty to assign incoming samples
to sample numbers other than the one specified by the master. These stipulations are necessary in
order to ensure that the master will have the assumed high degree of control over the slave’s
memory.

Following receipt of the Begin Sample Transfer Acknowledge reply, the master must issue the Begin
Sample Transfer message. This message reiterates the target sample number and specifies the Data Packet
Length which the master will use during the transfer. The master must receive a reply from the slave which
will be one of Send Next Packet, Wait, or SMDI Message Reject.

Send Next Packet is the expected reply, and kicks off the series of master-to-slave Data Packet transfer
exchanges. Each exchange consists of the sending of a Data Packet message by the master, followed by the
receipt of a reply from the slave. Again, the typical replies are Send Next Packet, Wait and SMDI Message
Reject.

Wait is given as a reply whenever the slave is unable to immediately accept the next Data Packet.
Typically, the reason for this is that it must delete an existing sample at the specified destination sample
location before it can begin transferring the new sample to that location. During the time that it keeps the master
waiting, the slave device should assume a busy state - one in which it responds to a TEST UNIT READY
command with BUSY status. The master device must issue the TEST UNIT READY command periodically
to the slave until it responds with READY/GOOD status. The frequency of issue of these commands is left
to the discretion of the master device, but should not be less than once per second in order to avoid excessive
delays. Upon obtaining a READY/GOOD response from the slave, the master must receive a reply from the
slave, which is expected to be Send Next Packet

Note: That this is an exception to the SEND/RECEIVE alternation rule. The master should then resume
the Data Packet exchange process. If the slave is not able to maintain normal SCSI communica-
tions during the time it is busy, it can simply go completely off-line until it is able to resume the
transfer.

A SMDI Message Reject reply may be obtained in response to the Begin Sample Transfer message if
the sample number in this message is different from the one which was contained in the preceding Sample
Header message, or if no Sample Header message was sent by the master immediately prior to the Begin
Sample Transfer message. During the packet exchange process, a reject reply will be obtained if the Packet
Number contained in a Data Packet is different from the packet number expected by the slave at that point. A
SMDI Message Reject reply may also be obtained if the slave device’s normal capabilities do not include

14© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

accepting sample information from another device, although if such is the case, the slave device will most
likely reject the preceding Sample Header message and thereby prevent the procedure from proceeding any
further.

Data Packet exchanges proceed in a manner similar to those in the procedure for transferring a sample
from a slave to a master. After accepting the final Data Packet from the master, the slave should reply with an
End Of Procedure message, at which point the procedure is complete, and both master and slave are
disengaged.

As with sample transfers from the slave to the master, transfers from master to slave may be halted by
either the master or the slave at any time by means of the Abort Procedure message. If this message is sent by
the master, the slave replies with an Ack message to complete the message exchange and signal its acceptance
of the Abort Procedure message.

Deleting A Sample From Slave Memory

This procedure is, in effect, a subset of the one for transferring a sample from a master to a slave. The
master sends a Delete Sample From Slave Memory message to the slave. This message specifies the number
of the sample which the master wishes to have deleted.

The expected slave reply is End Of Procedure. If the process of deleting a sample involves long time
delays on the part of the slave, the slave may instead reply with the Wait message. This reply is handled in
exactly the same fashion as was described in the procedure for transferring a sample from a master to a slave,
and the End Of Procedure reply is expected after the Wait period ends.

The SMDI Message Reject Reply will be used if the specified sample number is out of range for the
slave device, if the sample location specified is already empty, or if the slave device does not support this
operation.

SMDI Messages

This section defines specific SMDI messages and provides relevant details on how each is to be used.

Command Descriptor Blocks (CDBs) for the SCSI SEND and RECEIVE commands used to transmit
SMDI messages are shown immediately below for reference. For the purposes of SMDI, all fields in these
CDBs other than the operation code (byte 0) and the Transfer/Allocation Length (bytes 2-4) should always be
set to zero. A slave device which receives these commands with non-zero values in bytes 1 or 5 is required to
reject them according to the standard SCSI method for responding to an Illegal Request condition.

Each message diagram indicates only the actual message text - i.e., the data transferred during the the
data-out phase of a SEND command or the data-in phase of a RECEIVE command. The command descriptor
block for the associated SCSI SEND or RECEIVE command is not shown with each message description, since
it is always the same except for the Transfer/Allocation Length value.

15© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: No Message

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0000H)

Message sub ID Code (0000H)

Additional Message Length (000000H)

No defined uses at present.

16© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: SMDI Master Identify

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0001H)

Message Sub-ID Code (0000H)

Additional Message Length (000000H)

Sent by a master, usually in order to test an unknown target SCSI processor device for its ability to reply
as a SMDI slave. The slave is expected to reply with the SMDI Slave Identify message.

17© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: SMDI Slave Identify

(MSB)

SMDI message tag(“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0001H)

Message sub ID Code (0001H)

Additional Message Length (000000H)

Standard reply to the SMDI Master Identify message. Identifies a target SCSI processor device as a
SMDI-capable slave device.

18© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

7 6 5 4 3 2 1 0
SMDI Message: SMDI Message Reject

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0002H)

Message Sub-ID Code (0000H)

Additional Message Length (000004H)

(MSB)

(MSB)
(LSB)

(LSB)

Rejection Code

Rejection Sub-Code

Slave reply to a any message from a master requesting information which is not available or an
operation which the slave is not able to perform, or containing invalid or out-of-range parameters, or arriving
at an inappropriate time, or otherwise presenting a situation in which the slave cannot provide the reply
normally expected. The Message Reject message contains specific rejection codes which indicate the reason
for its use as a reply. Defined rejection codes are listed elsewhere in this document.

19© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: ACK

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0100H)

Message Sub-ID Code (0000H)

Additional Message Length (000003H)

Reply given by a slave to any message from a master which signals an unexpected change in the course
of a procedure - e.g., Abort Procedure - and which demands a recognizable reply in order to complete the
exchange.

20© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: NAK

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0101H)

Message Sub-ID Code (0000H)

Additional Message Length (000000H)

No defined uses at present.

21© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: Wait

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0102H)

Message Sub-ID Code (0000H)

Additional Message Length (000000H)

This message may be used as a reply a slave at any time during a procedure to notify the master that
an abnormally long or unknown delay will be experienced before the procedure can continue. This is typically
related to a need on the part of the slave to access local mass storage or to rearrange memory contents in order
to continue the procedure (for example, deleting a sample from memory when the master is sending a new one
to the same location). The Wait message is appropriate whenever the anticipated delay has some likelihood
of approaching the standard 250 millisecond SCSI Selection Response Time and thereby raising the possibility
that the slave will miss the master’s next SCSI selection attempt.

The Wait message is never an expected reply, but always preempts a different expected reply. At the
end of the delay signalled by the Wait message, during which the slave device may or may not go completely
off-line, the slave is expected to have a reply message pending for the master, which receives the pending reply
in order to resume the procedure. The master must not attempt to send any further messages to the slave before
it has received this reply. The message with which the slave replies at this time depends upon the procedure
being performed, as well as upon current device conditions. Typically, however, it will be the reply which was
originally expected at the time that the Wait message was received in its place. In this sense, the Wait message
and its associated delay can be viewed, from a procedure perspective, as having been inserted transparently
between a message SEND from a master and its RECEIVE of an expected reply.

22© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

7 6 5 4 3 2 1 0
SMDI Message: Send Next Packet

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0103H)

Message Sub-ID Code (0000H)

Additional Message Length (000003H)

(MSB)

(LSB)
Packet Number

Packet handshake message during a data transfer procedure. Sent by the master during slave-to-master
transfers - received from the slave during master-to-slave transfers. The Packet Number is that of the next
packet to be sent.

23© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: End of Procedure

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0104H)

Message Sub-ID Code (0000H)

Additional Message Length (000000H)

May be used by slave or master to signal or acknowledge the normal completion of a procedure. The
uses of this message are defined specifically for each procedure - it is not applicable to all procedures.

24© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

7 6 5 4 3 2 1 0
SMDI Message: Abort Procedure

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0105H)

Message Sub-ID Code (0000H)

Additional Message Length (000000H)

May be transmitted by either master or slave at any time during any procedure to halt the procedure
immediately. If this message is sent by the master, the slave should reply with an Ack message to complete
the message exchange and signal its acceptance of the Abort Procedure message.

25© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 to

n+13

7 6 5 4 3 2 1 0
SMDI Message: Data Packet

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0110H)

Message Sub-ID Code (0000H)

Additional Message Length (n+3)

Packet Number

packet data (n bytes)

(MSB)

(LSB)

This message is used to transfer a packet of data in either direction between master and slave. The
content of the data section of the Data Packet message depends upon the particular transfer currently in
progress. It may be raw sample data, device-specific control information, or any other type of information
which, because of its nature, is more convenient to transmit as a series of packets than by way of specific
messages defined for that type of data. The Data Packet message format shown above is used in all cases.

26© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Raw sample data transfers use a data format identical to the Sound Designer II data-fork format. Each
packet contains a number of sample data words represented as a string of bytes. Sample data is encoded in two’s
complement format. 16-bit sample data is sent two bytes per word in little endian format - i.e., MS byte first,
followed by LS byte. Data of other precision is handled by adjusting the format accordingly. Two bytes per
word are used for samples with resolution from 9-15 bits, with the significant bits of each sample left-justified
in each 16-bit word formed by an ms/ls pair of packet bytes, and all non-significant bits set to zero. Samples
of 8-bit or lower resolution require only a single byte per sample, with sample data again left-justified in each
byte. Samples with resolution beyond 16 bits require three or more bytes per sample word - the left-justification
rule applies here as well.

The data byte count of a Data Packet message may not be such as to split a single sample data word
across consecutive packets. The data byte count of a Data Packet message must never be zero. There is no other
specific lower limit on the allowable size of a Data Packet except for the need to satisfy requirements (such
as the one regarding word-splitting) imposed by the packet contents.

Multi-channel sounds are transmitted in an interleaved format of ascending channel number according
to the number of channels involved. For example, a stereo sample is sent as alternating left and right sample
words (left channel is channel 1, right channel is channel 2). A four-channel sound would rotate through
channels 1-4 in order, presenting one sample data word from each channel in turn. It is permissible for multi-
channel sounds to be divided into packets without regard for this rotation, provided that the prohibition against
splitting of individual sample words is observed.

In a multi-packet transfer of n packets, transfers start with packet number 0 and proceed through packet
1, 2, 3, ..., n-1. The total number of packets required to complete any transfer is determined completely by the
size of the file being transferred, the data format used, and the negotiated Data Packet Length. All packets are
expected to be the same length, with the exception of the final packet, which will usually be shorter than the
others, since it contains only the bytes which remain to be transferred. No filler bytes are to be inserted at the
end of the final packet.

27© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

7 6 5 4 3 2 1 0
SMDI Message: Sample Header Request

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0120H)

Message Sub-ID Code (0000H)

Additional Message Length (000003H)

Sample Number
(MSB)

(LSB)

Sent by a master device to request a sample header. The slave replies with a Sample Headerssage, or
with Message Reject. The sample number is used to indicate a specific sample location in the slave device
about which the master wishes to obtain information.

28© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7 6 5 4 3 2 1 0
SMDI Message: Sample Header

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0121H)

Message Sub-ID Code (0000H)

Additional Message Length (00001AH+n)

Sample Number

Sample format - Bits Per Word

(MSB)

(LSB)

Sample format - Number Of Channels

29© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 to

n + 36

(MSB)
Sample Period (nanoseconds)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

Sample Length (words)

Sample Loop Start Word Number

(MSB)

(LSB)

Sample Loop End Word Number

Sample Loop Control
(MSB)

(LSB)
Sample Pitch Integer

(MSB)
(LSB)

Sample Pitch Fraction

Sample Name Lenght (n)

Sample Name (n bytes)

The sample header message transmits essential sample control information.

30© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

In general, parameters are as per the MIDI SDS Sample Dump Header. however, that multi-byte values
are transmitted in MS-byte-to-LS-byte order, in contrast to MIDI SDS, but in keeping with general SCSI
practice.

Sample Loop Start and Loop End word numbers may range from zero (the start of the sample) to
[Sample Length minus one].

Sample Format - Number Of Channels refers to possible interleaving of sample data for two or more
audio channels into a single file. This follows the Sound Designer II method of sample interleaving. When
more than one channel of sample data is indicated, the Sample Length, Loop Start and Loop End values apply
to each of the interleaved channels individually, and it is understood that the actual (word) length of the file
when it is transferred will be the specified sample length multiplied by the specified number of channels.

Sample Pitch indicates the absolute musical pitch of the sound represented by the sample when played
at the specified sample rate. It is presented in an integer/fraction format using a pitch numbering system
borrowed from the MIDI Tuning Dump Standard. In this system, the integer designates a specific semitone
(eg., 60 decimal, or 3CH, for middle C) and the fraction indicates a fraction of a semitone upward from the
specified semitone (thus, 003C.0000 is exactly middle C, 003C.028F is one cent above middle C, 003C.8000
is 50 cents above middle C, etc). In cases where the sample pitch value is unavailable or not applicable, a default
value of 003C.0000 should be used).

The Sample Name is an ASCII string which may contain any combination of character codes, subject
to these restrictions:

Non-printing (i.e., control) characters should not be used.

Leading and trailing blanks should not be used - embedded blanks are permissible.

The length of the string may anywhere from 0 to 255 bytes and must exactly match the Sample Name Length
parameter.

A device which receives a Sample Header message containing a name string may alter the received
string as required to conform to the above restrictions or, more importantly, to meet constraints imposed by
the receiving system (especially on the length of the name string). If appropriate, the sample name may be
ignored altogether. A Sample Header message should never be rejected on the basis of the Sample Name
Length or the content of the Sample Name field. Naming conventions and restrictions differ widely among
systems which make use of sampled audio information - therefore, it should be assumed that a sample name
which is relayed to another device may be altered to some degree upon arriving there. If the device generating
the Sample Header message does not maintain name information, or does not have name information for the
specified sample, it may specify a Sample Name Length of zero, and omit the Sample Name string entirely.

31© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 to

n + 14

7 6 5 4 3 2 1 0
SMDI Message: Sample Name

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0123H)

Message Sub-ID Code (0001H)

Additional Message Length (000004H+n)

Sample Number
(MSB)

(LSB)
Sample Name Length (n)

Sample Name (n bytes)

The Sample Name message is used by a master device to assign a new name to an existing sample in
a slave device. Comments regarding the Sample Name parameter are the same as those for the Sample Name
portions of the Sample Header message - refer to the description of that message for further details.

The expected reply is End Of Procedure. The Sample Name message should be rejected only if the
specified Sample Number is out of range or corresponds to an unused sample location in the slave, or if the
slave does not support this operation.

32© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

7 6 5 4 3 2 1 0
SMDI Message: Delete Sample From Memory

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0124H)

Message Sub-ID Code (0000H)

Additional Message Length (000003)

Sample Number
(MSB)

(LSB)

Used by a master device to command a slave to delete a specific sample from its memory. The expected
reply is End Of Procedure - a Wait reply and associated delay may be inserted ahead of this reply. The Delete
Sample From Memory message should be rejected only if the specified Sample Number is out of range or
corresponds to an unused sample location in the slave, or if the slave does not support this operation.

33© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

7 6 5 4 3 2 1 0
SMDI Message: Begin Sample Transfer

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0122H)

Message Sub-ID Code (0001H)

Additional Message Length (000008H)

Sample Number
(MSB)

(LSB)

Data packet length
(MSB)

(LSB)

Used in conjunction with Begin Sample Transfer Acknowledge (see below).

Sent by a master to a slave to initiate the transfer of a sample in either direction. Assumes that a sample
header has been successfully transferred in the immediately-preceding message exchange. The Sample
Number must match that of the preceding Sample Header message. A slave should reject this message if either

34© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

of these conditions is not met.

In transfers from slave to master, the Data Packet Length value specifies the maximum Data Packet
length (in bytes) that the master can accommodate. The expected slave reply is Begin Sample Transfer
Acknowledge.

In transfers from master to slave, the Data Packet Length value specifies the Data Packet length (in
bytes) that the master will use. The expected slave reply is Send Next Packet.

35© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

7 6 5 4 3 2 1 0
SMDI Message: Begin Sample Transfer Acknowledge

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0122H)

Message Sub-ID Code (0001H)

Additional Message Length (000006H)

Sample Number
(MSB)

(LSB)

Data Packet Length
(MSB)

(LSB)

Used in conjunction with Begin Sample Transfer (see above).

Received from a slave as a reply to a master’s Begin Sample Transfer message when initiating a sample
transfer from slave to master. In this case, the Data Packet Length value indicates the number of data bytes per
Data Packet message that will be used by the slave in carrying out the transfer.

36© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Received from a slave as a reply to a master’s Sample Header message when initiating a sample transfer
from master to slave. In this case, the Data Packet Length value indicates the maximum number of data bytes
per Data Packet message that can be accommodated by the slave in carrying out the transfer.

37© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Bit
Byte

0

1

2

3

4

5

6

7

8

9

10

11 to

n+10

7 6 5 4 3 2 1 0
SMDI Message: Transmit MIDI Message

(MSB)

SMDI message tag (“SMDI”)

(MSB)

(MSB)

(MSB)

(LSB)

(LSB)

(LSB)

(LSB)

Message ID Code (0200H)

Message Sub-ID Code (0000H)

Additional Message Length (n+3)

MIDI Message String (n bytes)
(MSB)

Used to transfer a MIDI message via the SMDI protocol.

Any legal MIDI message may be transmitted by this message. The MIDI message string is a literal
MIDI message complete with status and data bytes, presented exactly as it would be if transmitted via a MIDI
interface. The string should contain one and only one complete MIDI message. The SMDI protocol does not
support MIDI running status - status bytes must be presented explicitly.

The use of SMDI for MIDI message transmission is mainly envisioned as a method of transferring
system exclusive and other non-real-time information. SMDI is not appropriate for transmission of time-
critical performance or timing event messages. Nonetheless, there is no prohibition against using SMDI to
transmit such MIDI event messages if the inherent limitations of doing so are not objectionable (e.g.,
transmission of test note events from within sample editor/librarian applications).

38© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Also, SMDI capability does not imply any specific type or degree of MIDI implementation, nor does
it define SMDI slave replies to MIDI messages transmitted by a master using this protocol, other than a default
reply of No Message to a MIDI message sent by a master device. This may often be the most appropriate reply
to such a message. more specific replies, such as MIDI messages returned by the slave, are also possible, but
are not defined by the SMDI protocol.

39© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Table 1 - SMDI Message Codes

Note: Message ID Codes F000H-FFFFH are reserved for manufacturer or device specific messages.

Message ID Code Message Sub-ID Code Message Name

0000H 0000H No Message
0001H 0000H SMDI Master Identify
0001H 0001H SMDI Slave Identify
0002H 0000H SMDI Message Reject

0100H 0000H Ack
0101H 0000H Nak
0102H 0000H Wait
0103H 0000H Send Next Packet
0104H 0000H End Of Procedure
0105H 0000H Abort Procedure

0110H 0000H Data Packet

0120H 0000H Sample Header Request
0121H 0000H Sample Header
0122H 0000H Begin Sample Transfer
0122H 0001H Begin Sample Transfer Acknowledge
0123H 0000H Sample Name
0124H 0000H Delete Sample From Memory

0200H 0000H Transmit MIDI Message

40© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Table 2 - SMDI Message Rejection Codes

Message Rejection CodeMessage Rejection Sub-Code Message
Rejection Cause

0002H Last message rejected (general):
0000H - message/procedure is not supported
0002H - message is inappropriate

0005H 0000H Device is busy

0011H Send Next Packet message rejected:
0000H - Packet Number mismatch

0020H Sample Header, Sample Header
Request or other sample operation
message rejected:

0000H - Sample Number is out of range
0002H - no sample at this Sample Number
0004H - insufficient sample memory available
0005H - insufficient param memory available
0006H - can’t accommodate Sample Format -

Bits Per Word
0007H - can’t accommodate Sample Format -

Number Of Channels

0022H Begin Sample Transfer message
rejected:

0001H - Sample Number does not match that
of previously transferred Sample
Header

0002H - can’t accommodate Data Packet
Length

41© 1991 Peavey Electronics Corp. Version 0.03 SMDIPROT March 1992

Table 3 - SMDI Sense Codes (for use with REQUEST SENSE
command)

These codes are to be used as the Additional Sense Code in byte 12 (of bytes 0 thru 17) of the 18-
byte Extended Sense Data format. They are appropriate only when reporting one of the SMDI-specific
error conditions listed below, and should be used only with a Sense Key (byte 2) value of 09H (Vendor-
Specific). All of the Sense Codes values listed here are within the range reserved by the SCSI specifica-
tion for vendor-specific use and do not coincide with any standard SCSI Sense Codes. The Additional
Sense Code Qualifier (byte 13) is zero for all errors.

SMDI slave devices are required by their nature to support various Sense Keys and Additional Sense
Codes other than the SMDI-specific ones listed here. These others are standard ones defined by the SCSI
specification and are not reiterated here.

Sense Code Value Sense Code Meaning

80H SEND rejected - slave reply message is pending.

81H RECEIVE rejected - no slave reply message is pending.

82H SEND rejected - initiator’s Transfer Length is smaller than 11.

83H RECEIVE rejected - initiator’s Allocation Length is smaller than 11.

84H SEND rejected - initiator is sending a non-SMDI message.

85H SEND rejected - initiator’s Transfer Length and Additional Message Length
parameters are in conflict.

86H SEND rejected - initiator’s Additional Message Length parameter is incorrect for
the current message.

